Total No.	of Questions : 9]	3	SEAT No.:			
PB363	[6261]	J-35	[Total No. of Pages: 5			
S.E. (Computer/I.T./Computer Science & Design Engineering/AI & ML)						
	ENGINEERINGMA					
	(2019 Pattern) (Seme	ester - IV	7) (207003)			
Time: 2½			[Max. Marks : 70			
	ns to the candidates: Q.1 is compulsory.					
2)	Attempt Q2 or Q.3, Q.4 or Q.5, Q.6 o		_			
	Neat diagrams must be drawn wherev Figures to the right indicate full mar		y.			
	Use of electronic pocket calculator is		26			
6)	Assume suitable data, if necessary.					
	6.					
<i>Q1</i>)Write	e the correct option for the follow:	ing multip	le choice questions.			
_			50,			
a)	The first three moments of a dis		. •			
	40. Third moment about the mean i) − 64		[2]			
	iii) 32		- 32			
		5				
b)	If probability density function f	(x) of a co	ntinuous random variable x is			
	defined by $f(x) = \begin{cases} \frac{1}{4} - 2 \le x \le \frac{1}{4} \\ 0, \text{ otherwise} \end{cases}$ then $P(x \le 1)$ is	£ 2	$\frac{1}{2}$ So the root x , of the equation			
	then $P(x \le 1)$ is	30				
	$\lim_{x \to \infty} T(x \le 1) \text{ is}$					
	i) $\frac{1}{4}$	ii) -				
	4					
	iii) $\frac{1}{3}$	iv) $\frac{3}{2}$	34			
	3	2	10,00			
c)	Using secant method, the first ap	proximation	on to the root x , of the equation			
	$x^3 - 5x - 7 = 0$, if the in	itial app	Y			
	$x_0 = 2.5 \text{ and } x_1 = 3 \text{ is}$::) 2	[2]			
	i) 2.7183	ii) 3	6.			
	iii) 2	1V) 0	7			
		120				

P.T.O.

d)	If Lagrange	's polynomial	passes	through
)		o porjugation	P	011

х	0	1
у	-4	-4

then $\frac{dy}{dx}$ at x = 1 is given by

i)

ii)

iii)

To compare the variability of two or more than two series, coefficient of e) variation is obtained using (\bar{x}) is arithmetic mean and σ is standard deviation) [1]

 $\frac{\sigma}{\overline{x}} \times 100$

f) If
$$x_0$$
 is initial approximation to the root of the equation $f(x) = 0$ by Newton - Raphson method, first approximation x_1 is given by [1]

- ii) $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$ iv) $x_1 = x_0 + \frac{f'(x_0)}{f(x_0)}$

$$Q2$$
) a) Find arithmetic mean and coefficient of variation for x if the data is,

$$\begin{vmatrix} x & 1 & 2 & 3 & 4 \\ f & 9 & 6 & 5 & 3 \end{vmatrix}$$

[5]

[2]

b) Fit a straight line of the form
$$y = ax + b$$
 for the data $\begin{vmatrix} x & -2 & -1 & 0 & 1 & 2 \\ y & 5 & 3 & 1 & -1 & -3 \end{vmatrix}$. [5]

Given the information: $\overline{x} = 8.2$, $\overline{y} = 12.4$, $\sigma_x = 6.2$, $\sigma_y = 20$ $\gamma(x, y) = 0.9$. c) Find line of regression of x on y. Estimate x for y = 10[5]

[6261]-35

- Q3) a) The first four moments of a distribution about the value 2 are 2, 10, 20 and 25. Find first four moments about mean, coefficient of skewness and kurtosis.
 - b) Fit a parabola of the type $y = ax^2 + bx + c$ for the data $\begin{vmatrix} x & -1 & 0 & 1 & 2 \\ y & 3 & 1 & 3 & 9 \end{vmatrix}$ [5]
 - c) Find the coefficient of correlation for following distribution,

$$\begin{vmatrix} x & 5 & 7 & 9 & 11 & 13 \\ y & 9 & 6 & 12 & 3 & 15 \end{vmatrix}$$
 [5]

- Q4) a) A box contains 6 red balls, 4 white balls and 5 blue balls. Three balls are drawn successively from the box. Find the probability that they are drawn in the order red, white and blue if each ball is not replaced. [5]
 - b) A coin is so biased that appearence of head is twice likely as that of tail. If a throw is made 6 times, using Binomial distribution, find the probability that at least two heads will appear. [5]
 - c) In a distribution, exactly normal, 7% of the items are under 35 and 89% are under 63. Find the mean and standard deviation of the distribution. [Given A(z = 1.48) = 0.43, A(z = 1.23) = 0.39] [5]

OR

- Q5) a) The average number of misprints per page of a book is 1.5. Assuming the distribution of number of misprints to be poisson, find the number of pages containing more than one misprint if the book contains 900 pages. [5]
 - b) A random sample of 200 screws is drawn from a population which represents the size of screws. If a sample is distributed normally with mean 3.15 cm and standard deviation 0.025cm, find expected number of screws whose size falls between 3.12 cm and 3.2 cm. [5]

[Given
$$A(z = 1.2) = 0.3849$$
, $A(z = 2) = 0.4772$]

c) A nationalised bank utilizes four teller windows to render fast service to the customers. On a particular day, 800 customers were observed. They were given service at the different windows as follows. [5]

Window number	Expected no.of customers
1	150
2	250
3	170
4	230

Test whether the customers are uniformly distributed over the windows at 5% level of significance.

[Given $\chi^2_{3,0.05} = 7.815$]

- Q6) a) Using the Bisection method up to fifth iteration, find a real root of the equation $x^3 4x 9 = 0$. [5]
 - b) Find the real root of the equation $2x^3 2x 5 = 0$ by applying Newton Raphson method at the end of fourth iteration. [5]
 - c) Solve by Gauss Seidel method, the system of equations: [5]

$$45x_1 + 2x_2 + 3x_3 = 58$$
$$-3x_1 + 22x_2 + 2x_3 = 47$$

$$5x_1 + x_2 + 20x_3 = 67$$

Q7) a) Solve the following system by Cholesky's method:

$$4x_{1} + 2x_{2} + 14x_{3} = 12$$

$$2x_{1} + 17x_{2} - 5x_{3} = 101$$

$$14x_{1} - 5x_{2} + 83x_{3} = 155$$

b) Solve the following system by Gauss elimination method: [5]

$$2x_1 - 2x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 3$$
$$3x_1 - x_2 + 2x_3 = 1$$

c) Use method of false position to find the fourth root of 32 correct to three decimal places. [5]

Using Newton's forward interpolation formula, find the polynomial **Q8**) a) satisfying the data. [5]

X	0	1	2	3	4
у	-4	-4	0	14	44

- rd rule to obtain $\int_{1}^{2} \frac{1}{x} dx$ dividing the interval into four b) [5] parts.
- Use Euler's method to solve $\frac{dy}{dx} = \frac{x-y}{2}$, y(0) = 1. Tabulate values of y 0 to x = 2. Take h = 0.5. [5]

- Runge Kutta method of fourth order to $\frac{dy}{dx} = x^2 + y^2$; $x_0 = 1$, $y_0 = 1.5$ to find y at x = 1.1 taking h = 0.1[5]
 - Using modified Euler's method, find y(0.1) given that $\frac{dy}{dx} = 1 + xy$; b) y(0) = 1 and h = 0.1. Consider accuracy to four decimal places.
 - Using Newton's backward interpolation formula, find the polynomial c) * * 4. 10.73 satisfying the data. Also, find y when x = 4.5. **[5]**

х	1	2	3 9 4		5
у	14	30	62	116	198