Total No. of Question	ns:8]	SEAT No. :	
PB3778	[6262]-36	[Total No. of P	ages :4
	T.E. (Computer Engineer	ring)	
	THEORY OF COMPUTA		
((2019 Pattern) (Semester-I)	(310242)	

Time : 2½ *Hours*] [Max. Marks: 70]

Instructions to the candidates:

- Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
- 2) Neat diagrams must be drawn wherever necessary.
- Figures to the right indicates full marks. 3)
- Assume suitable data, if necessary.
- What is context free Grammar? Define CFG. What are the capabilities of **Q1**) a) CEG? [8]

Give a context Free Grammar for the following language

 $L = \{ w \in \{a, b\} * | w \text{ is a palindrome of odd length} \}.$

- What is Derivation in CF b)
 - What is relation of parse tree for derivation in CFG? ii)
 - What is leftmost derivation and Rightmost derivation? iii)
 - Explain leftmost derivation and Rightmost derivation with parse iv) tree. Derive the string a-b+c using leftmost derivation and Rightmost at re. O derivation for the CFG having production rule

$$G = \{S = S + S$$

$$S = S - S$$

$$S = a \mid b \mid c$$

}

OR

P.T.O.

[10]

When do we say that CFG is in Greibach Normal Form (GNF)? Explain **Q2**) a) the steps to convert CFG to GNF for following Grammars [12]

$$G1 = \{S \rightarrow aAB \mid aB, A \rightarrow aA \mid a, B \rightarrow bB \mid b\}$$

$$G2 = \{S \rightarrow aAB \mid aB, A \rightarrow (aA \mid \varepsilon, B \rightarrow bB \mid \varepsilon\}$$

$$G3 = \{S \rightarrow XB \mid AA\}$$

$$A \rightarrow a \mid SA$$

$$B \rightarrow b$$

$$X \rightarrow a$$

- What is ambiguity in CFG? What is relation of parse tree for finding b) i) ambiguity in CFG.
 - What is leftmost derivation and Rightmost derivation? ii)
 - iii) Explain leftmost derivation and Rightmost derivation and ambiguity for the CFG having production rule.

$$G = \{ S = aSb \mid SS \}$$

$$S = \in$$

[6]

What is pushdown automata? Define PDA pictorially and mathematically **Q3**) a) with respect to input tape, stack, finite control and Instanteous description.

Design a PDA for accepting a language
$$\{a^nb^{2n}|n>=1\}$$

, w. spis give. Construct a context free grammar which accepts N (A), where b)

$$A = (\{q0, q1\}, \{0, 1\}, \{Z0, Z\}, \delta, q0, Z0, \phi \text{ where } \delta \text{ is given by})$$

$$\delta$$
 (q0, 1, Z0) = {(q0, Z Z0)}

$$\delta (q0, \epsilon, Z0) = \{(q0, \epsilon)\}$$

$$\delta$$
 (q0, 1, Z) = {(q0, Z Z)}

$$\delta$$
 (q0, 0, Z) = {(q1, Z)}

$$δ$$
 (q1, 1, Z) = {(q1, ε)}

$$\delta$$
 (q1, 0, Z0) = {(q0, Z0)}

OR

<i>04</i>) a)	Design a PDA for accepting a lar	nguage { $0^{n}1^{m}0^{n}$ }	$m, n \ge 1$.	[6]
Q4) a)	Design a 1 DA for accepting a far	nguage to 1 o	111, 11/-1 }.	լսյ

b) Draw a PDA for the CFG given below: [6]

 $S \rightarrow aSb$

$$S \rightarrow a \mid b \mid \epsilon$$

And simulate PDA to recognize "aaabb".

c) Design a push down automation to recognize the language generated by the following [6]

grammar?

$$S \rightarrow S + S \mid S * S \mid 4 \mid 2$$

Show the acceptance of the input string 2 + 2*4 by this PDA.

- i) Universal Turing Machine (UTM)
- ii) Recursively Enumerable Languages
- b) Design a TM that multiplies two unary numbers over $\Sigma = \{1\}$. Write simulation for the string 11*111. [7]
- c) Construct a TM for the language $L = \{0^n 1^n 2^n\}$ where $n \ge 1$. [6]

OR

- **Q6)** a) Construct a TM for substraction of two unary numbers f(a-b) = c where a is always greater than b. [5]
 - b) What is undecidability? How do we prove universal language is undecidable? What is the relation between undecidability and reducibility theory. [12]

[6262]-36

Q 7)	a)	What do you mean by polynomial time reduction? Explain with an example of SAT. [7]		
	b)	Explain the following terms with respect to computations complexity with example. [10]		
		i) Solvable Vs Unsolvable problem		
		ii) Decidable Vs. Undecidable problem		
		iii) P Vs NP problem		
		OR		
Q8)	a)	Explain in brief the term "recursively enumerable". [6]]	
	b)	Explain examples of problems in NP. [6]]	
	c)	Differentiate between P class and NP class. [5]]	
[626	(2) 2	Explain examples of problems in NP. Differentiate between P class and NP class. [5]	33	
[626	[2]-3	4 \bigotimes^{1}		